Learning to Optimally Segment Point Clouds

Peiyun Hu, David Held, Deva Ramanan

Paper ID: 2977

Raw LIDAR Scans

Today, most autonomous vehicles perceive the world through LiDAR point clouds.

They often use pre-built maps to first filter out points from the background, then run clustering on points from the foreground to obtain object-level perception.

Map-based Preprocessing

192500

*We focus on a limited field of view in this work.

Object-level Perception

However, it is often hard to set the right hyper-parameters for clustering. For example, Euclidean Clustering with a large distance threshold tends to under-segments pedestrians.

*Colors flicker because the algorithm does not track objects across time.

Object-level Perception

And Euclidean Clustering with a small distance threshold tends to over-segments vehicles.

*Colors flicker because the algorithm does not track objects across time.

No One-Fits-All Solution

The best distance threshold often varies from scenario to scenario.

A Hierarchical Perspective

Segmentations with different thresholds form a hierarchy, where nodes represent segments.

Learning Objectness Models

We learn a model to predict an objectness score for each segment in the hierarchy.

Objectness

How well a segment overlaps with ground truths.

Searching for Optimality

Given a hierarchy of segments with scores, we search for the optimal segmentation.

Optimal Worst-case Segmentation

We propose an efficient algorithm that produces optimal segmentation under this definition.

the worst segment score

segmentation score

Bad

defines

Average-case Segmentation

We also propose an efficient algorithm guided by average-case score.

average local segment score

global segmentation score

defines

Bad

Good

Quantitative Evaluation

Protocol: compute the percentage of objects that are under-segmented and over-segmented.

Assumption: output is a valid partition.

$$U = \frac{1}{L} \sum_{l=1}^{L} \mathbf{1} \left[\frac{|C_{i^*} \cap C_l^{gt}|}{|C_{i^*}|} < \tau_U \right]$$

2 under-segmented pedestrians

$$O = \frac{1}{L} \sum_{l=1}^{L} \mathbf{1} \left[\frac{|C_{i^*} \cap C_l^{gt}|}{|C_l^{gt}|} < \tau_O \right]$$

1 over-segmented car

Held et al., RSS'15

Segmentation Errors

(1) As distance threshold increases, more under-segmentation and less over-segmentation.
(2) Our adaptive algorithm significantly outperforms each single-parameter baseline.
(3) We also plot the lower-bound errors for the search space, showing room for improvement.

No One-Fits-All Solution

The best distance threshold often varies from scenario to scenario.

Algorithmic Output

Our algorithm can adaptively choose the best distance threshold for each scenario.

Learning to Optimally Segment Point Clouds

Peiyun Hu¹

segment and plot an extruded polygon to show the spatial extent.

Qualitative results

Code

https://cs.cmu.edu/~peiyunh/opcseg

Deva Ramanan^{1,2*} David Held^{1*} ¹Robotics Institute, Carnegie Mellon University ²Argo Al

Our proposed algorithm takes a pre-processed LiDAR point cloud with background removed (left) and produces a classagnostic instance-level segmentation over all foreground points (right). For visualization, we use a different color for each