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Figure 1: On the top, we show a state-of-the-art multi-scale feedforward
net, trained for keypoint heatmap prediction, where the blue keypoint (the
right shoulder) is visualized in the blue plane of the RGB heatmap. The
ankle keypoint (red) is confused between left and right legs, and the knee
(green) is poorly localized along the leg. We believe this confusion arises
from bottom-up computations of neural activations in a feedforward net-
work. On the bottom, we introduce hierarchical Rectified Gaussian (RG)
models that incorporate top-down feedback by treating neural units as latent
variables in a quadratic energy function. Inference on RGs can be unrolled
into recurrent nets with rectified activations. Such architectures produce
better features for “vision-with-scrutiny” tasks [7] (such as keypoint pre-
diction) because lower-layers receive top-down feedback from above. Leg
keypoints are much better localized with top-down knowledge (that may
capture global constraints such as kinematic consistency).

Convolutional neural nets (CNNs [13]) have demonstrated remarkable per-
formance in recent history for visual tasks [12, 18, 20]. Such approaches
compute hierarchical representations in a bottom-up, feedforward fashion.
As biological evidence suggests [22], feedforward processing works effec-
tively for vision at a glance tasks. However, vision with scrutiny tasks ap-
pear to require top-down feedback processing [8, 10], which is missing in
the “uni-directional” CNNs. The main contribution of this work is to ex-
plore “bi-directional” architectures that are capable of feedback reasoning.

Feedback reasoning has played a central role in many classic computer
vision models, such as hierarchical probabilistic models [9, 14, 24] and part-
based models [3]. Interestingly, part-based model’s feed-forward inference
can be written as a CNN [4], however the proposed mapping does not hold
for feedback inference.

To endow CNNs with feedback inference, we treat neural units as non-
negative latent variables in a quadratic energy function. When probabilisti-
cally normalized, our quadratic energy function corresponds to a Rectified
Gaussian (RG) distribution, for which inference can be cast as a quadratic
program (QP) [19]. The QP’s coordinate descent optimization steps, as we
demonstrated in the paper, can be “unrolled” into a recurrent neural net
with rectified linear units. An illustration of unrolling two sequences of
coordinate updates is visualized in Fig. 2. This observation allows us to
discriminatively-tune RGs with neural network toolboxes: we tune Gaus-
sian parameters such that, when latent variables are inferred from an image,
the variables act as good features for discriminative tasks.

To demonstrate the benefits of integrating top-down feedback, we ex-
perimented with one-pass and two-pass RG variants of VGG-16[18], which
we refer to as QP1 and QP2. The architecture of unrolled QP2 is present in
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Figure 2: Illustration of unrolling two sequences of layer-wise coordinate
updates into a recurrent net with skip connections.

Figure 4: Keypoint localization results of QP2 on the MPII Human Pose
testset. Our models are able to localize keypoints even under significant
occlusions.
Fig. 3. We performed experiments on four challenging benchmark datasets
of human faces and bodies, which are AFLW[11], COFW[2], Pascal Person[6],
and MPII Human Pose[1].

On AFLW, we compared to ourselves for exploring best practices to
build multi-scale predictors for facial keypoint localization. On COFW, our
QP1 performs near the state-of-the-art, while QP2 significantly improves in
accuracy of visible landmark localization and occlusion prediction. On Pas-
cal Person, we show QP1 outperform previous state-of-the-art by a large
margin, while QP2 further improves accuracy by 2% without increasing
model complexity. On MPII Human Pose, our QP2 model outperforms all
prior work on localization accuracy over full-body keypoints. We present
qualitative results in Fig. 4 and quantitative results in Table 1. As a side
note, even visibility prediction is not in the standard evaluation protocol, we
found QP2 outperforms QP1 on visibility prediction on both MPII Human
Pose and Pascal Person dataset.

Given the consistent improvement of QP2 over QP1, we further explored
QPk’s performance as a function of K. Due to memory limit, we trained a
shallower network on MPII. As shown in Table 2, we concluded that: (1)
all models with additional passes outperform the baseline QP1; (2) addi-
tional passes generally helps, but performance maxes out at QP4. A two-
pass model (QP2) is surprisingly effective at capturing top-down info, while



Figure 3: We show the architecture of QP2 implemented in our experiments. QP1 corresponds to the first half of unrolled QP2, which essentially resembles
the state-of-the-art VGG-16 CNN [18]. Note that QP1 and QP2 share the same number of parameters but differ in the number of layer-wise updates. Purple
layers denote multi-scale predictors that predict keypoint heatmaps given activations from multiple layers. Multi-scale filters are efficiently implemented
with coarse-to-fine upsampling [15], highlighted by the purple dotted rectangle. Dotted layers are layers having no effects on predictions in QP2, hence
not implemented to reduce memory.

Head Shou Elb Wri Hip Kne Ank Upp Full
GM [5] - 36.3 26.1 15.3 - - - 25.9 -
ST [17] - 38.0 26.3 19.3 - - - 27.9 -
YR [23] 73.2 56.2 41.3 32.1 36.2 33.2 34.5 43.2 44.5
PS [16] 74.2 49.0 40.8 34.1 36.5 34.4 35.1 41.3 44.0
TB [21] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 84.5 82.0
QP1 94.3 90.4 81.6 75.2 80.1 73.0 68.3 82.4 81.1
QP2 95.0 91.6 83.0 76.6 81.9 74.5 69.5 83.8 82.4

Table 1: PCKh-0.5 on MPII-test using the recommended benchmark
protocol[1].

K 1 2 3 4 5 6
Upper Body 57.8 59.6 58.7 61.4 58.7 60.9
Full Body 59.8 62.3 61.0 63.1 61.2 62.6

Table 2: PCKh-0.5 on MPII-Val for QPk on a smaller network

being fast and easy to train.
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