

Carnegie Mellon THE ROBOTICS INSTITUTE

Core ideas

- Human vision suggests that feedforward processing suffices for visionat-a-glance tasks (scene recognition), but feedback is needed for vision-with-scrutiny (fine-grained spatial understanding) [Hochstein and M. Ahissar, Neuron 02]
- We incorporate feedback into CNNs by unrolling inference on a hierarchical probabilistic model
- Our model adds top-down feedback "for-free", without increasing the number of parameters in standard networks.
- Near state-of-the-art results for facial and human landmark localization

Predicting heatmaps with CNNs

Fully-convolutional (skip) CNNs Long et al, CVPR 2015

Heatmap predictions improve by adding lower-level features (through skip connections) and top-down feedback (that fixes poor localization of knee and left/right ankle ambiguity).

Top-down feedback is particularly helpful when localizing occluded landmarks

Bottom-Up and Top-Down Reasoning with Hierarchical Rectified Gaussians Peiyun Hu, Deva Ramanan

Our top-down model No increase in parameters

Approach

- We make use of Rectified Gaussian models [Socci et al, NIPS 98], a marriage of Boltzmann machines and Gaussians.
- Socci et al demonstrate that MAP inference on such models corresponds to a quadratic program (QP).
- We show that coordinate QP updates can be unrolled into a rectified recurrent net that naturally incorporates bottom-up and top-down processing.
- We train our inference engine with backprop using standard CNN packages.

Feedforward activations for layer 2, channel 7

Activations after feedback (appear to focus more on hair)

$$S(z) = rac{1}{2}z^TWz + b^Tz$$

 $P(z) \propto e^{S(z)}$

Boltzmann: $z_i \in \{0, 1\}, w_{ii} = 0$

Gaussian: $z_i \in R, -W$ is PSD

Rect. Gaussian: $z_i \in R^+, -W$ is copositive

MPII Human Pose

	Head	Shou	Elb	Wri	Hip	ŀ
GM [10]	-	36.3	26.1	15.3	-	
ST [37]	-	38.0	26.3	19.3	-	
YR [52]		56.2				
PS [35]	74.2	49.0	40.8	34.1	36.5	3
TB [45]	96.1	91.9	83.9	77.8	80.9	7
\mathbf{QP}_1	94.3	90.4	81.6	75.2	80.1	7
\mathbf{QP}_2	95.0	91.6	83.0	76.6	81.9	7

Our top-down model (QP_2) on par with approaches that add specialized modules for top-down spatial constraints [TB]

avg

IEEE 2016 Conference on **Computer Vision and Pattern** Recognition

Kne Ank Upp Full - ||25.9| - ||27.9| -33.2 34.5 43.2 44.5 34.4 35.1 41.3 44.0 2.3 64.8 84.5 82.0 '3.0|68.3||82.4|81.1 74.5|69.5||83.8|**82.4**

Caltech Occluded Faces (red for predicted invisibility)

At standard precision of 80%, our model (QP₂) nearly doubles the recall of prior art [FLD] for visibility prediction

AFLW

Visit our project site at: <u>https://peiyunh.github.io/rg-mpii/</u>