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Inspiration from human vision

We explore efficient bidirectional networks that combine bottom-up and top-down feedback 
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Activations with feedback

Method Accuracy (SP) Error Reduction
CRF [18] 93.23% 0
Spatial CRF [18] 93.95% 10.64%
CRBM [18] 94.10% 12.85%
GLOC [18] 94.95% 25.41%
CLVM1 96.05% 41.60%
CLVM2 96.38% 46.60%
M-CLVM1 96.11% 42.59%
M-CLVM2 96.72% 51.48%
Oracle 99.97% 100.00%

Table 1: We plot superpixel-wise segmentation accuracy on
LFW-Parts, following the protocol introduced in [18]. We
show qualitative results in Fig. 9. We report both overall
acurracy and error reduction with respect to a CRF base-
line (as recommended by [18]). Our bottom-up baseline
(CLVM1) outperforms all published work. Adding top-
down feedback (CLVM2) improves results, while adding
multi-task keypoint targets during learning (M-CLVM2)
produces the best overall performance. We further exam-
ine the latter model in Fig. 10 and Fig. 11.
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Figure 8: The left plots the cumulative error distribution
for keypoint localization on LFW-Parts. The right plots the
percentage of test images with an average localization er-
ror below 5%. Our two-pass models with feedback signifi-
cantly outperform one-pass bottom-up variants.

point locations by interactively applying and correcting the
landmark detector trained from AFLW. We tabulate results
for pixel segmentation in Table 1 and keypoint location in
Fig. 8. We refer the reader to the captions for a detailed
analysis, but overall, we find that bidirectional top-down
feedback is crucial for multi-task prediction, and that a sin-
gle multi-task architecture performs as well (or even better
than) multiple single-task architectures. In terms of seg-
mentation, we reduce the best reported error [18] by a factor
of 2. Fig. 9 visualizes qualitative results, while Fig. 10 and
Fig. 11 examine our best-performing model (M-CLVM2) in
detail.

Pascal Person: The Pascal 2011 Person dataset [12]
consists of 7,368 person instances, each annotated with: (1)

Figure 9: Segmentation and facial keypoint localization re-
sults on LFW-Parts. We use colors to denote hair (red), skin
(green) and background (blue). In general, bottom-up mod-
els CLVM1 and M-CLVM1 tend to predict pixelated seg-
ments because they use features from higher layers (that are
highly nonlinear but spatially quantized). Adding top-down
feedback (CLVM2) tends to produce smoother segmenta-
tions, while multi-task training (M-CLVM2) also removes
spurious pixels.

Figure 10: The top 3 rows correspond to 3 (out of the
64) channel activations of z

0
1 (computed from a bottom-

up pass). Columns correspond to activations computed on
different images. The bottom 3 rows correspond to the
same channel activations from z1 (computed after top-down
feedback). Feedback-aware feature channels better capture
semantic information corresponding to hair (Channel 7),
skin (Channel 61), and background (Channel 33). Classi-
fiers defined on such features produce better segmentations
(FIg. 11). The last column shows the average channel acti-
vation of both z

0
1 and z1 across different images.
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Figure 8: The left plots the cumulative error distribution
for keypoint localization on LFW-Parts. The right plots the
percentage of test images with an average localization er-
ror below 5%. Our two-pass models with feedback signifi-
cantly outperform one-pass bottom-up variants.
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for pixel segmentation in Table 1 and keypoint location in
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feedback is crucial for multi-task prediction, and that a sin-
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than) multiple single-task architectures. In terms of seg-
mentation, we reduce the best reported error [18] by a factor
of 2. Fig. 9 visualizes qualitative results, while Fig. 10 and
Fig. 11 examine our best-performing model (M-CLVM2) in
detail.
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Figure 9: Segmentation and facial keypoint localization re-
sults on LFW-Parts. We use colors to denote hair (red), skin
(green) and background (blue). In general, bottom-up mod-
els CLVM1 and M-CLVM1 tend to predict pixelated seg-
ments because they use features from higher layers (that are
highly nonlinear but spatially quantized). Adding top-down
feedback (CLVM2) tends to produce smoother segmenta-
tions, while multi-task training (M-CLVM2) also removes
spurious pixels.

Figure 10: The top 3 rows correspond to 3 (out of the
64) channel activations of z

0
1 (computed from a bottom-

up pass). Columns correspond to activations computed on
different images. The bottom 3 rows correspond to the
same channel activations from z1 (computed after top-down
feedback). Feedback-aware feature channels better capture
semantic information corresponding to hair (Channel 7),
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Feedforward activations (layer 1)

Feedforward + feedback activations (layer 1)

~ 1ms

~ 40ms

Feedback appears to add knowledge about the “hair”
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Method Accuracy (SP) Error Reduction
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Table 1: We plot superpixel-wise segmentation accuracy on
LFW-Parts, following the protocol introduced in [18]. We
show qualitative results in Fig. 9. We report both overall
acurracy and error reduction with respect to a CRF base-
line (as recommended by [18]). Our bottom-up baseline
(CLVM1) outperforms all published work. Adding top-
down feedback (CLVM2) improves results, while adding
multi-task keypoint targets during learning (M-CLVM2)
produces the best overall performance. We further exam-
ine the latter model in Fig. 10 and Fig. 11.
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Figure 8: The left plots the cumulative error distribution
for keypoint localization on LFW-Parts. The right plots the
percentage of test images with an average localization er-
ror below 5%. Our two-pass models with feedback signifi-
cantly outperform one-pass bottom-up variants.

point locations by interactively applying and correcting the
landmark detector trained from AFLW. We tabulate results
for pixel segmentation in Table 1 and keypoint location in
Fig. 8. We refer the reader to the captions for a detailed
analysis, but overall, we find that bidirectional top-down
feedback is crucial for multi-task prediction, and that a sin-
gle multi-task architecture performs as well (or even better
than) multiple single-task architectures. In terms of seg-
mentation, we reduce the best reported error [18] by a factor
of 2. Fig. 9 visualizes qualitative results, while Fig. 10 and
Fig. 11 examine our best-performing model (M-CLVM2) in
detail.
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spurious pixels.
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for keypoint localization on LFW-Parts. The right plots the
percentage of test images with an average localization er-
ror below 5%. Our two-pass models with feedback signifi-
cantly outperform one-pass bottom-up variants.

point locations by interactively applying and correcting the
landmark detector trained from AFLW. We tabulate results
for pixel segmentation in Table 1 and keypoint location in
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analysis, but overall, we find that bidirectional top-down
feedback is crucial for multi-task prediction, and that a sin-
gle multi-task architecture performs as well (or even better
than) multiple single-task architectures. In terms of seg-
mentation, we reduce the best reported error [18] by a factor
of 2. Fig. 9 visualizes qualitative results, while Fig. 10 and
Fig. 11 examine our best-performing model (M-CLVM2) in
detail.

Pascal Person: The Pascal 2011 Person dataset [12]
consists of 7,368 person instances, each annotated with: (1)

Figure 9: Segmentation and facial keypoint localization re-
sults on LFW-Parts. We use colors to denote hair (red), skin
(green) and background (blue). In general, bottom-up mod-
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ments because they use features from higher layers (that are
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CNNs

Past work on CNNs + feedback:
Pinherio & Collobert, 14 

Cao et al, 15 
Gatta et al, 14

So how do we add feedback to deep models?

Hu & Ramanan, “Bottom-Up and Top-Down Reasoning with Hierarchical Rectified Gaussians”



So how do we add feedback to deep models?

CNNs

Boltzmann Machines Rectified Gaussians

The Rectified Gaussian Distribution 353 

(a) (b) 

Figure 2: The competitive distribution for two variables. (a) A non-convex energy 
function with two constrained minima on the x and y axes. Shown are contours of 
constant energy, and arrows that represent the negative gradient of the energy. (b) 
The rectified Gaussian distribution has two peaks. 

The rectified Gaussian happens to be most interesting in the nonconvex case, pre-
cisely because of the possibility of multiple minima. The consequence of multiple 
minima is a multimodal distribution, which cannot be well-approximated by a stan-
dard Gaussian. We now consider two examples of a multimodal rectified Gaussian. 

4 COMPETITIVE DISTRIBUTION 

The competitive distribution is defined by 
Aij -dij + 2 (5) 

bi = 1; (6) 
We first consider the simple case N = 2. Then the energy function given by 

X2 +y2 
E(x,y)=- 2 +(x+y)2_(x+y) (7) 

has two constrained minima at (1,0) and (0,1) and is shown in figure 2(a). It 
does not lead to a normalizable distribution unless the nonnegativity constraints are 
imposed. The two constrained minima of this nonconvex energy function correspond 
to two peaks in the distribution (fig 2(b)). While such a bimodal distribution 
could be approximated by a mixture of two standard Gaussians, a single Gaussian 
distribution cannot approximate such a distribution. In particular, the reduced 
probability density between the two peaks would not be representable at all with a 
single Gaussian. 
The competitive distribution gets its name because its energy function is similar 
to the ones that govern winner-take-all networks[9]. When N becomes large, the 
N global minima of the energy function are singleton vectors (fig 3), with one 
component equal to unity, and the rest zero. This is due to a competitive interaction 
between the components. The mean of the zero temperature distribution is given 
by 

(8) 

The eigenvalues of the covariance 
1 1 

(XiXj) - (Xi)(Xj) = N dij - N2 (9) 

Socci et al, 98

Hu & Ramanan, “Bottom-Up and Top-Down Reasoning with Hierarchical Rectified Gaussians”



Unroll MAP updates on Rectified Gaussian models into a rectified neural net

Insight: 
Use CNNs to learn Hierarchical Rectified Gaussians

Similar architectures: Past work on unrolling models:
Chen et al, 15 
Zheng et al, 15 

Goodfellow et al, 13

Autoencoders, DeConvNets,  
U-Nets, Hourglass Nets, Ladder Networks

Hu & Ramanan, “Bottom-Up and Top-Down Reasoning with Hierarchical Rectified Gaussians”
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(a) (b)

Figure 9: Facial landmark localization and occlusion pre-
diction results of QP2 on COFW, where red means oc-
cluded. Our bidirectional model is robust to occlusions
caused by objects, hair, and skin. We also show cases where
the model predicts the occlusion correctly but fails to local-
ize them accurately.(b).

Visible Points All Points
RCPR [2] - 8.5
RPP [50] - 7.52
HPM [6] - 7.46
SAPM [7] 5.77 6.89
FLD-Full [49] 5.18 5.93
QP1 5.26 10.06
QP2 4.67 7.87

Table 1: Average keypoint localization error (as a fraction of
inter-occular distance) on COFW. When adding top-down
feedback (QP2), our accuracy on visible keypoints signifi-
cantly improves upon prior work. In the text, we argue that
such localization results are more meaningful than those for
occluded keypoints. In Fig. 10, we show that our models
signifantly outperform all prior work in terms of keypoint
visibility prediction.

benchmark. Consider an image of a face mostly occluded
by the hand (Fig. 8). In such cases, humans may not even
agree on keypoint locations, indicating that a keypoint
distribution may be a more reasonable target output. Our
models provide such uncertainty estimates, while most
keypoint architectures based on regression cannot.

Pascal Person: The Pascal 2011 Person dataset [13]
consists of 11,599 person instances, each annotated with a
bounding box around the visible region and up to 23 hu-
man keypoints per person. This dataset contains signifi-
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Figure 10: Keypoint visibility prediction on COFW, mea-
sured by precision-recall curves. Our bottom-up model
CLVM1 already outperforms all prior that does not make
use of ground-truth segmentation masks (where acronyms
correspond those in Table 1). Our top-down model QP2

even approaches the accuracy of such upper bounds. Fol-
lowing past work, we visualize visibility predictions in
Fig. 9 at a precision of 80%. At such a level, we nearly
double the best previously-published recall of FLD [50].

↵ 0.10 0.20
CNN+prior [29] 47.1 -
QP1 66.5 78.9
QP2 68.8 80.8

Table 2: We show human keypoint localization performance
on PASCAL VOC 2011 Person following the evaluation
protocol in [29]. PCK refers to the fraction of keypoints
that were localized within some distance (measured with re-
spect to the instance’s bounding box). Our bottom-up mod-
els already significantly improve results across all distance
thresholds (↵ = 10, 20%). Our top-down models add a 2%
improvement without increasing the number of parameters.

cant occlusions. We follow the evaluation protocol of [29]
and present results for localization of visible keypoints on
a standard testset in Fig. 11 and Table 2. Our bottom-up
QP1 model already significantly improves upon the state-
of-the-art (including prior work making use of deep fea-
tures), while our top-down models QP2 further improve
accuracy by 2% without any increase in model complex-
ity (as measured by the number of parameters). Note that
the standard evaluation protocols evaluate only visible key-
points. In supplementary material, we demonstrate that our
model can also accurately predict keypoint visibility “for
free”.

MPII: MPII is (to our knowledge) the largest available
articulated human pose dataset [1], consisting of 40,000
people instances annotated with keypoints, visibility flags,

7

Localization error on occluded points: 
Bottom-up: 21.3 %    
Top-down: 15.3 %    

Improvement comes “for free” (no increase in parameters)

Empirical results: Caltech Occluded Faces

Hu & Ramanan, “Bottom-Up and Top-Down Reasoning with Hierarchical Rectified Gaussians”
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(a) (b)

Figure 9: Facial landmark localization and occlusion pre-
diction results of QP2 on COFW, where red means oc-
cluded. Our bidirectional model is robust to occlusions
caused by objects, hair, and skin. We also show cases where
the model predicts the occlusion correctly but fails to local-
ize them accurately.(b).

Visible Points All Points
RCPR [2] - 8.5
RPP [50] - 7.52
HPM [6] - 7.46
SAPM [7] 5.77 6.89
FLD-Full [49] 5.18 5.93
QP1 5.26 10.06
QP2 4.67 7.87

Table 1: Average keypoint localization error (as a fraction of
inter-occular distance) on COFW. When adding top-down
feedback (QP2), our accuracy on visible keypoints signifi-
cantly improves upon prior work. In the text, we argue that
such localization results are more meaningful than those for
occluded keypoints. In Fig. 10, we show that our models
signifantly outperform all prior work in terms of keypoint
visibility prediction.

benchmark. Consider an image of a face mostly occluded
by the hand (Fig. 8). In such cases, humans may not even
agree on keypoint locations, indicating that a keypoint
distribution may be a more reasonable target output. Our
models provide such uncertainty estimates, while most
keypoint architectures based on regression cannot.

Pascal Person: The Pascal 2011 Person dataset [13]
consists of 11,599 person instances, each annotated with a
bounding box around the visible region and up to 23 hu-
man keypoints per person. This dataset contains signifi-
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Figure 10: Keypoint visibility prediction on COFW, mea-
sured by precision-recall curves. Our bottom-up model
CLVM1 already outperforms all prior that does not make
use of ground-truth segmentation masks (where acronyms
correspond those in Table 1). Our top-down model QP2

even approaches the accuracy of such upper bounds. Fol-
lowing past work, we visualize visibility predictions in
Fig. 9 at a precision of 80%. At such a level, we nearly
double the best previously-published recall of FLD [50].

↵ 0.10 0.20
CNN+prior [29] 47.1 -
QP1 66.5 78.9
QP2 68.8 80.8

Table 2: We show human keypoint localization performance
on PASCAL VOC 2011 Person following the evaluation
protocol in [29]. PCK refers to the fraction of keypoints
that were localized within some distance (measured with re-
spect to the instance’s bounding box). Our bottom-up mod-
els already significantly improve results across all distance
thresholds (↵ = 10, 20%). Our top-down models add a 2%
improvement without increasing the number of parameters.

cant occlusions. We follow the evaluation protocol of [29]
and present results for localization of visible keypoints on
a standard testset in Fig. 11 and Table 2. Our bottom-up
QP1 model already significantly improves upon the state-
of-the-art (including prior work making use of deep fea-
tures), while our top-down models QP2 further improve
accuracy by 2% without any increase in model complex-
ity (as measured by the number of parameters). Note that
the standard evaluation protocols evaluate only visible key-
points. In supplementary material, we demonstrate that our
model can also accurately predict keypoint visibility “for
free”.

MPII: MPII is (to our knowledge) the largest available
articulated human pose dataset [1], consisting of 40,000
people instances annotated with keypoints, visibility flags,
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Figure 9: Facial landmark localization and occlusion pre-
diction results of QP2 on COFW, where red means oc-
cluded. Our bidirectional model is robust to occlusions
caused by objects, hair, and skin. We also show cases where
the model predicts the occlusion correctly but fails to local-
ize them accurately.(b).

Visible Points All Points
RCPR [2] - 8.5
RPP [50] - 7.52
HPM [6] - 7.46
SAPM [7] 5.77 6.89
FLD-Full [49] 5.18 5.93
QP1 5.26 10.06
QP2 4.67 7.87

Table 1: Average keypoint localization error (as a fraction of
inter-occular distance) on COFW. When adding top-down
feedback (QP2), our accuracy on visible keypoints signifi-
cantly improves upon prior work. In the text, we argue that
such localization results are more meaningful than those for
occluded keypoints. In Fig. 10, we show that our models
signifantly outperform all prior work in terms of keypoint
visibility prediction.

benchmark. Consider an image of a face mostly occluded
by the hand (Fig. 8). In such cases, humans may not even
agree on keypoint locations, indicating that a keypoint
distribution may be a more reasonable target output. Our
models provide such uncertainty estimates, while most
keypoint architectures based on regression cannot.

Pascal Person: The Pascal 2011 Person dataset [13]
consists of 11,599 person instances, each annotated with a
bounding box around the visible region and up to 23 hu-
man keypoints per person. This dataset contains signifi-
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Figure 10: Keypoint visibility prediction on COFW, mea-
sured by precision-recall curves. Our bottom-up model
CLVM1 already outperforms all prior that does not make
use of ground-truth segmentation masks (where acronyms
correspond those in Table 1). Our top-down model QP2

even approaches the accuracy of such upper bounds. Fol-
lowing past work, we visualize visibility predictions in
Fig. 9 at a precision of 80%. At such a level, we nearly
double the best previously-published recall of FLD [50].

↵ 0.10 0.20
CNN+prior [29] 47.1 -
QP1 66.5 78.9
QP2 68.8 80.8

Table 2: We show human keypoint localization performance
on PASCAL VOC 2011 Person following the evaluation
protocol in [29]. PCK refers to the fraction of keypoints
that were localized within some distance (measured with re-
spect to the instance’s bounding box). Our bottom-up mod-
els already significantly improve results across all distance
thresholds (↵ = 10, 20%). Our top-down models add a 2%
improvement without increasing the number of parameters.

cant occlusions. We follow the evaluation protocol of [29]
and present results for localization of visible keypoints on
a standard testset in Fig. 11 and Table 2. Our bottom-up
QP1 model already significantly improves upon the state-
of-the-art (including prior work making use of deep fea-
tures), while our top-down models QP2 further improve
accuracy by 2% without any increase in model complex-
ity (as measured by the number of parameters). Note that
the standard evaluation protocols evaluate only visible key-
points. In supplementary material, we demonstrate that our
model can also accurately predict keypoint visibility “for
free”.

MPII: MPII is (to our knowledge) the largest available
articulated human pose dataset [1], consisting of 40,000
people instances annotated with keypoints, visibility flags,
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Take-home messages

• Add top-down feedback into CNNs “for free” 

• Unfold inference on rectified probabilistic models into rectified neural nets 

• Competitive accuracy on keypoint localization
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Figure 9: Facial landmark localization and occlusion pre-
diction results of QP2 on COFW, where red means oc-
cluded. Our bidirectional model is robust to occlusions
caused by objects, hair, and skin. We also show cases where
the model predicts the occlusion correctly but fails to local-
ize them accurately.(b).
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Table 1: Average keypoint localization error (as a fraction of
inter-occular distance) on COFW. When adding top-down
feedback (QP2), our accuracy on visible keypoints signifi-
cantly improves upon prior work. In the text, we argue that
such localization results are more meaningful than those for
occluded keypoints. In Fig. 10, we show that our models
signifantly outperform all prior work in terms of keypoint
visibility prediction.

benchmark. Consider an image of a face mostly occluded
by the hand (Fig. 8). In such cases, humans may not even
agree on keypoint locations, indicating that a keypoint
distribution may be a more reasonable target output. Our
models provide such uncertainty estimates, while most
keypoint architectures based on regression cannot.

Pascal Person: The Pascal 2011 Person dataset [13]
consists of 11,599 person instances, each annotated with a
bounding box around the visible region and up to 23 hu-
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sured by precision-recall curves. Our bottom-up model
CLVM1 already outperforms all prior that does not make
use of ground-truth segmentation masks (where acronyms
correspond those in Table 1). Our top-down model QP2

even approaches the accuracy of such upper bounds. Fol-
lowing past work, we visualize visibility predictions in
Fig. 9 at a precision of 80%. At such a level, we nearly
double the best previously-published recall of FLD [50].
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QP1 66.5 78.9
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Table 2: We show human keypoint localization performance
on PASCAL VOC 2011 Person following the evaluation
protocol in [29]. PCK refers to the fraction of keypoints
that were localized within some distance (measured with re-
spect to the instance’s bounding box). Our bottom-up mod-
els already significantly improve results across all distance
thresholds (↵ = 10, 20%). Our top-down models add a 2%
improvement without increasing the number of parameters.

cant occlusions. We follow the evaluation protocol of [29]
and present results for localization of visible keypoints on
a standard testset in Fig. 11 and Table 2. Our bottom-up
QP1 model already significantly improves upon the state-
of-the-art (including prior work making use of deep fea-
tures), while our top-down models QP2 further improve
accuracy by 2% without any increase in model complex-
ity (as measured by the number of parameters). Note that
the standard evaluation protocols evaluate only visible key-
points. In supplementary material, we demonstrate that our
model can also accurately predict keypoint visibility “for
free”.

MPII: MPII is (to our knowledge) the largest available
articulated human pose dataset [1], consisting of 40,000
people instances annotated with keypoints, visibility flags,

7

MPIICaltech Occluded Faces

Hu & Ramanan, “Bottom-Up and Top-Down Reasoning with Hierarchical Rectified Gaussians”

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#261

CVPR
#261

CVPR 2016 Submission #261. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) (b)

Figure 9: Facial landmark localization and occlusion pre-
diction results of QP2 on COFW, where red means oc-
cluded. Our bidirectional model is robust to occlusions
caused by objects, hair, and skin. We also show cases where
the model predicts the occlusion correctly but fails to local-
ize them accurately.(b).
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Table 1: Average keypoint localization error (as a fraction of
inter-occular distance) on COFW. When adding top-down
feedback (QP2), our accuracy on visible keypoints signifi-
cantly improves upon prior work. In the text, we argue that
such localization results are more meaningful than those for
occluded keypoints. In Fig. 10, we show that our models
signifantly outperform all prior work in terms of keypoint
visibility prediction.

benchmark. Consider an image of a face mostly occluded
by the hand (Fig. 8). In such cases, humans may not even
agree on keypoint locations, indicating that a keypoint
distribution may be a more reasonable target output. Our
models provide such uncertainty estimates, while most
keypoint architectures based on regression cannot.

Pascal Person: The Pascal 2011 Person dataset [13]
consists of 11,599 person instances, each annotated with a
bounding box around the visible region and up to 23 hu-
man keypoints per person. This dataset contains signifi-
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even approaches the accuracy of such upper bounds. Fol-
lowing past work, we visualize visibility predictions in
Fig. 9 at a precision of 80%. At such a level, we nearly
double the best previously-published recall of FLD [50].
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Table 2: We show human keypoint localization performance
on PASCAL VOC 2011 Person following the evaluation
protocol in [29]. PCK refers to the fraction of keypoints
that were localized within some distance (measured with re-
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els already significantly improve results across all distance
thresholds (↵ = 10, 20%). Our top-down models add a 2%
improvement without increasing the number of parameters.

cant occlusions. We follow the evaluation protocol of [29]
and present results for localization of visible keypoints on
a standard testset in Fig. 11 and Table 2. Our bottom-up
QP1 model already significantly improves upon the state-
of-the-art (including prior work making use of deep fea-
tures), while our top-down models QP2 further improve
accuracy by 2% without any increase in model complex-
ity (as measured by the number of parameters). Note that
the standard evaluation protocols evaluate only visible key-
points. In supplementary material, we demonstrate that our
model can also accurately predict keypoint visibility “for
free”.

MPII: MPII is (to our knowledge) the largest available
articulated human pose dataset [1], consisting of 40,000
people instances annotated with keypoints, visibility flags,
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